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Chapter 3

Additive Processes for Metals

David P. Arnold, Monika Saumer, and Yong-Kyu Yoon

Abstract Metals are vital building blocks for MEMS. Pure metals and metal alloys

AQ1

are employed in microsystem design to achieve a wide array of functionality.
Common examples include electrical conductors, mechanical structures, magnetic
elements, thermal conductors, optical reflectors, and more. In this chapter, additive
processes for metals are discussed in the context of their application in MEMS.
Particular attention is paid to MEMS-centric processing technologies, where thick
metal layers are often required. Basic guidelines are given for material selection,
and fabrication recipes are provided as a starting point for process development.

3.1 Introduction

From the Bronze Age through the Iron Age, and even into modern times, met-
als have fueled technological growth and played a key role in shaping society.
All but 25 of the 120 elements on the periodic table are considered metals, and
many are naturally abundant on earth. Elemental metals are generally known to
exhibit high electrical conductivity, high thermal conductivity, relatively high phys-
ical density, and good mechanical ductility. In addition, metals can be combined
with each other or with nonmetals to form innumerable metal alloy combinations
with diverse electrical, mechanical, magnetic, thermal, and optical material prop-
erties. The availability, adaptability, and functionality of metals make them one of
the most widely used engineering materials, not only at the macroscale, but also for
microscale applications.
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3.1.1 Overview

Metals are widely used for MEMS in many different functional roles. Metals are
ubiquitously used as electrical interconnections for their high electrical conductiv-
ity. Metals also exhibit advantageous mechanical properties, so they are commonly
employed as mechanical elements, both rigid structures and flexures. Metals are
also good thermal conductors, and thus attractive for thermal applications. Certain
metals exhibit ferromagnetic behavior and can be used to create or guide magnetic
fields. For optical applications, metals are used to provide reflective, mirrorlike sur-
faces. Metal coatings are also used to encapsulate other materials, for example, to
prevent oxidation or create hermetic seals, and thin interfacial metal layers act to
enhance adhesion or prevent diffusion.

Material selection usually begins by identifying and prioritizing the desired mate-
rial properties. For example, if a microstructure is intended as a mechanically strong
electrical conductor, one may begin by searching for materials with high electrical
conductivity and high elastic modulus. Fortunately, bulk metals and metal alloys
have been widely studied for hundreds of years, and much of what is known about
bulk material properties largely applies at the microscale. With the emergence of
microelectronics, MEMS, and nanotechnology, there is also a growing wealth of
knowledge about unique material behavior at the micro- and nanoscale.

Once a specific metal or class of metals is identified, the next step is to deter-
mine how to fabricate and integrate the material into a microdevice. Although bulk
machining of metals is usually a top-down process (e.g. physical milling of a bulk
piece of metal), micromachining of metals is usually bottom-up (atom-by-atom,
layer-by-layer deposition). Herein lies a major complication. For macroscale appli-
cations, individual components are usually fabricated separately and then assembled
together. The individual system components can be machined independently of one
another. In MEMS fabrication, this is usually not the case; devices are manufac-
tured in a sequential integrated fashion by selectively adding and subtracting layers
on a planar substrate. This manufacturing approach places limitations on materials
and structure geometries. Furthermore, microfabrication creates a complex interplay
between the fabrication process and the resulting material properties. These topics
are further discussed throughout this chapter.

Methods for metal deposition can be categorized into three groups: physical
vapor deposition (PVD), chemical vapor deposition (CVD), and electrochemical
deposition (ECD). For MEMS, PVD and ECD are more commonly used, and thus
are the primary focus of this chapter. Although CVD finds widespread usage in
semiconductor devices and integrated circuits for conformal deposition of thin metal
films, it is not as popular for MEMS fabrication because of film thickness limitations
and process complexity.1

The remainder of Section 3.1 discusses general tradeoffs for the various fab-
rication approaches available for depositing metals and metal alloys. Section 3.2

1See Chapter 2 (specifically Section 2.3) for general information on CVD. U
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3 Additive Processes for Metals

provides a more detailed discussion of PVD methods for metals, including evapo-
ration, sputtering, and pulsed-laser deposition. Section 3.3 describes ECD methods,
including both electroplating and electroless plating. Section 3.4 describes LIGA
and UV-LIGA processes, a key technological advancement in the history of MEMS.
Finally, Section 3.5 presents material properties and process selection guidelines for
metals.

3.1.2 Fabrication Tradeoffs

There are many fabrication-related tradeoffs that must be considered for microma-
chining of metals. The final material properties of a metal are often highly dependent
on the film thickness, deposition method, and specific processing conditions. This
creates interesting design/fabrication/integration challenges and compromises. In
addition, because of these geometrical and process dependencies, the material prop-
erties for metal films reported in the literature vary widely. Thus, although basic
starting recipes may be found (and many are provided below), some process devel-
opment is usually required for fine-tuning of the metal properties to meet a specific
need.

In addition to differing material properties, various fabrication methods yield
different microstructural features and process integration issues. For example, evap-
oration usually results in poor step-coverage but high film purity. Sputtering, on
the other hand, can provide good sidewall coverage, but with lower film purity.
PLD often affords high deposition rates, but is usually limited in deposition area.
In contrast to these PVD methods, electroplating and electroless plating rely on
chemically “growing” the metals. This enables selective deposition (e.g. using pho-
toresist masks) only where needed, thus avoiding additional process steps and time
required for film patterning via post-deposition chemical etching2 or liftoff.3 In
addition, the material waste (overage) associated with PVD can have significant
cost implications, especially for thick layers of expensive precious metals.

The required film thickness also affects fabrication process selection. For exam-
ple, thinner metal films may be used as coatings or as interfacial layers. In contrast,
to better conduct heat or to provide heftier mechanical structures, thicker metal films
may be required. Evaporation and electroless plating are better suited for thinner
films (e.g. less than 1 µm), whereas thicker films demand the faster deposition rates
afforded by sputtering, PLD, or electroplating. For commercial manufacturing, there
are also numerous tradeoffs involving cost, throughput, reliability, and repeatability.

The deposition of alloys raises additional issues. Different alloy ratios are often
required to enhance a material property such as electrical resistance, mechanical
hardness, magnetic permeability, and the like. In cases where a very specific alloy

2See Chapters 7 and 8 for more information on chemical etching.
3See Chapter 9 (specifically Section 9.2.5.5) for more information regarding liftoff.
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ratio is required, stoichiometric control is a major consideration. Reliably main-
taining a specific alloy ratio over long periods of time is critical for repeatable,
large-scale manufacturing. In addition to repeatability and control, there is another
important fabrication-related aspect for alloys: the ability (or inability) to vary the
alloy ratio. This is especially important for process development and for fine-tuning
of alloy composition. Moreover, deposition methods that permit on-the-fly alloy
control can be used to create graded alloys, multilayers, or other complex structures.

The different metal deposition methods offer varying degrees of alloy con-
trol. Evaporation of alloys is often discouraged because of the disparate and
highly temperature-dependent vapor pressures of different metal constituents. This
makes control of alloys difficult with conventional evaporation systems. In con-
trast, sputtering and PLD permit deposition of many different alloys with fairly
repeatable alloy control, but adjusting the alloy ratio requires changing the metal
target. This can create time-consuming and costly process development cycles. For
electroplating, the alloy ratio can sometimes be readily adjusted by varying the elec-
troplating current density without strong influence on the properties of the deposit.
Unfortunately, the alloy ratio may also be sensitive to other process conditions such
as pH, temperature, or stirring, so repeatability is sometimes difficult. Electroless
plating is less commonly used for alloy deposition because of the complex inter-
dependent factors that determine the composition. See Table 3.1 for a general
summary.

Table 3.1 General tradeoffs for metal deposition

Fabrication
process

Deposition
rate

Deposition
area Film purity Alloy control

Equipment
complexity

Evaporation Slow Very large High Poor Moderate
Sputtering Moderate Large Moderate Good High
PLD Moderate Small High Good High
Electroplating Fast Large Moderate Fair Low
Electroless

plating
Moderate Large Moderate Fair Very low

3.2 Physical Vapor Deposition

Physical vapor deposition (PVD) methods rely on the physical transfer of metal
atoms from a metal source to the wafer substrate, unlike chemical methods, which
employ a chemical reaction. Different physical phenomena can be used to drive the
process, as described below.

3.2.1 Evaporation

Evaporative deposition, or more commonly just “evaporation,” is a fairly straightfor-
ward method for metal deposition. The basic concept is to heat a metal sufficiently
to create a vapor, which diffuses and recondenses in solid form on other surfaces.
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3 Additive Processes for Metals

This process is usually performed in high-vacuum conditions (below 10−5 torr) so
as to limit gaseous molecular scattering and to create a high-purity process envi-
ronment. Note that, although the metal to be evaporated is obviously very hot, the
wafer substrate usually remains at room temperature, unless intentionally heated
or cooled. Also, because of the very low chamber pressures, the metal vapor tends
to follow a straight path, leading to very directional deposition and poor sidewall
coverage.

A typical system comprises a process chamber, a vacuum system, and a metal
heating system, as shown in Fig. 3.1. Wafers are usually mounted upside down on
a hemispherical chamber ceiling, which may include a planetary system to rotate
the wafers for improved uniformity. The metal to be deposited – known as the
“charge” – is placed in metal “boat” or ceramic crucible. The chamber is then closed
and evacuated to a base pressure of 10−6 torr or lower. Then, the metal is heated usu-
ally to 500–2500◦C (depending on the metal) to increase the vapor pressure. After a
warm-up period, a physical shutter is used to precisely start and end the deposition
onto the wafers. A quartz crystal microbalance (QCM) mounted inside the chamber
monitors the deposition, and can provide feedback signals for automated control.

Fig. 3.1 Schematic of evaporation system

3.2.1.1 Thermal Evaporation

The simplest evaporation systems use joule heating to heat the metal charge. The
dissipative heat can be created by direct conduction currents or magnetic-field-
induced eddy currents. In the simpler conductively heated systems, high currents
are passed through wound coils or a small metal boat (usually tungsten), inside
of which sits the charge. The resistive heating of the boat facilitates deposition of
relatively low-melting-point metals such as Ag, Al, and Au.

Evaporation of higher-melting-point refractory metals such as Ta, W, Mo, and Ti
is challenging because these require very high temperatures to achieve reasonable
vapor pressures and deposition rates [1]. Because of this, the use of metal boats and
direct conductive heating may not be permissible. Instead inductive heating can be
used where the metal sits in a ceramic crucible that is surrounded by a coil. RF
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excitation of the coil is used to induce eddy currents in the metal. This approach
permits a wider range of metals, but the crucible itself may become very hot, which
can result in contamination.

3.2.1.2 E-Beam Evaporation

Another configuration for evaporation uses a directed electron beam to bombard
the metal charge. The electron beam source is usually underneath the metal charge.
Strong magnetic fields are used to steer the electron beam in a 270◦ circular arc to
impinge on the charge. Although more complicated, the advantage of this approach
is that the electron beam heats a central portion of the charge: the outer area of the
charge and crucible remain at lower temperatures, so as to minimize contamination.

3.2.1.3 Issues with Alloys

Evaporation of alloys with precise alloy composition can be quite challenging. The
basic problem is that evaporation relies on heating to increase the vapor pressure
and thus control deposition rate. The vapor pressure and deposition rate of an ele-
mental metal are usually very sensitive to temperature, and different metals require
vastly different temperature ranges for evaporation. For single-element deposition,
precise control of the deposition rate is relatively unimportant, so long as the final
film thickness is controlled. This is easily accomplished using a QCM to stop the
deposition process at the predetermined film thickness.

Consider, however, deposition of a binary alloy. In a single-source system, a
metal alloy can be used as the charge, but at a given temperature, the two metals
in the alloy will evaporate at different rates, resulting in a different alloy ratio in the
deposited layer. Attempts can be made to compensate for this, but impracticably
precise temperature control may be required. Another approach is to coevapo-
rate different metals from independently heated crucibles. This allows independent
control of the evaporation rates, but because of the temperature sensitivity of the
evaporation process, and the inability to monitor the independent evaporation rates
easily, precise alloy control remains very challenging. One alternative is to create a
multilayer stack by alternating deposition of the constituent elements. After depo-
sition, a heat treatment can be used to interdiffuse the metals to form the desired
alloy. This approach, however, is more complicated, more time-consuming, and
requires a substrate that can withstand the high-temperature postdeposition heat
treatment.

It should be noted that graded alloys or multilayers can be easily achieved using
a multisource evaporation system. However, because of the difficulty of alloy con-
trol, evaporation is better suited for pure metals or for metal alloys where precise
composition is not necessary.

3.2.2 Sputtering

Sputtering is a physical process or phenomenon, where accelerated ions, usually
Ar+, knock out atoms in a solid target by bombardment in a potential gradient
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3 Additive Processes for Metals

environment. During the bombardment, momentum exchange occurs between the
ions and the atoms of the surface of the target. The energized atoms are volatile and
spread out as a vapor to land on the vicinity surface and the sample substrate. The
sputtering process requires a vacuum environment, which is prepared by pumping
out a stainless steel chamber enclosing the anode, the cathode, the target, the sub-
strate, and so on. The chamber is evacuated to a base pressure of 10−6 torr or lower.
Then a bombardment gas, usually Ar, is introduced to the chamber and maintained
around 1–10 mtorr level. The Ar gas is ionized into Ar+ by applying bias voltage
between the anode and the cathode. Depending on the voltage waveforms used, the
sputtering process is categorized as either direct current (DC) sputtering or radio
frequency (RF) sputtering, as shown in Fig. 3.2.

(a) (b)

Fig. 3.2 Schematics of (a) DC and (b) RF sputtering systems

This
figure
will be
printed
in b/w

To obtain uniform thickness of a thin-film metal layer, mechanical movement
such as rotation of the substrate holder can be used during the sputtering process.
The rotational speed of the stage ranges from 10 to 30 rpm. The deposition rate is a
function of many parameters including target-to-substrate distance, ion energy, the
mass of the ion species, the mass of the target material, and the like [2].

3.2.2.1 DC Sputtering

For the sputtering of electrically conductive materials such as Al, Ti, Cr, Cu, Ag, Au,
Pt, and W, a DC power source is used to energize the Ar+ ions to bombard the target
material placed on the cathode. The DC sputtering system, as depicted in Fig. 3.2a,
consists of the DC power supply, cathode, a metal target attached to the cathode,
Ar+ plasma generated by high-voltage application, and an anode on which a sample
wafer can be placed. The negatively biased metal target is bombarded by argon ions
from the plasma, ejecting one or more metal atoms. Some of these ejected atoms are
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transported and deposited on the substrate wafers. The deposition rate is increased
as the sputtering power is increased, however, too much power causes damage on
the substrate. To counteract this effect, magnetron sputtering has been introduced to
increase the deposition rate. A magnet placed behind the target creates a field that
guides electron movement near the target, causing more efficient ionization of Ar
without excessively high voltages.

3.2.2.2 RF Sputtering

As an alternative to the DC supply, RF power systems can be used, as shown in
Fig. 3.2b. The RF sputtering system also requires a DC bias voltage to generate
plasma. After plasma is generated, however, the major driving force acting on the
argon ions is exerted by the alternating current source. Typically the 13.56 MHz
industry, science, and medicine (ISM) frequency band is used. Because alternating
currents can flow across dielectric materials, RF sputtering systems can deposit not
only electrically conducting materials, such as metals, but also dielectric materials,
such as SiO2, Si3N4, and glass, which are not achievable with DC sputtering due to
charging effects. Also, by reversing the electrical connections, the substrate can be
bombarded as opposed to the metal target. This process is often used to clean the
substrate surface before depositing the target material.

3.2.2.3 Step Coverage

In contrast to the evaporation process, sputtering provides reasonably conformal
coatings on uneven surfaces. This is particularly useful for the metallization of three-
dimensional (3-D) MEMS structures as well as the metal interconnect of integrated
circuits. The step-coverage of a sputtered thin film in a via hole has been calcu-
lated [3, 4], where the profile shows a high deposition rate on the top surface and a
low deposition rate on the sidewall. As a result, the sidewall thickness tapers down
toward the bottom. For a very high aspect ratio, the bottom portion may not have
sufficient metal coverage due to limited mass transfer into the narrow entrance of the
via hole and the higher pressure environment in the chamber. This effect is depicted
in Fig. 3.3. This kind of poor coverage is more significant in high-aspect-ratio vias
or trenches as compared to high-aspect-ratio pillars or walls.

The step coverage can be improved by substrate heating to enhance surface
diffusion or by applying an RF bias to the wafers to introduce surface bombard-
ment resulting in redeposition on the sidewalls [1]. The heating approach may be
applicable to the metal interconnect process for ICs, where the insulating layer
is a temperature-tolerant material such as SiO2, however, it may not be directly
applicable for the metallization of 3-D MEMS structures where the structural mate-
rial is often a temperature-intolerant polymer. Step-coverage of thin films for very
high-aspect-ratio MEMS structures remains a challenging area. Alternatively, elec-
troless plating may be used for the thin film metallization of such high-aspect-ratio
polymeric structures. U
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Fig. 3.3 Sputtered metal
deposition in a densely placed
high-aspect-ratio structure

This
figure
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printed
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3.2.2.4 Other Issues in Sputtering

One concern in thin-film deposition using sputtering (or evaporation) on a thick
3-D polymeric layer is that the residual solvent or moisture tends to degas under
high vacuum conditions, resulting in poor adhesion between the polymer and
thin-film metal layer. To prevent degassing effects, an additional hardbake step is
recommended before the sputtering or evaporation process can be used.

One feature found in many sputtering systems is the ability to “clean” the sub-
strate before the metal deposition by sputter etching. This cleaning step can improve
adhesion of the metal. Sputter etching can be implemented either by reversing the
electrical connections or by placing negative bias on the substrate with respect to
the plasma, resulting in increasing ion bombardment on the substrate. Increasing
the incident ion energy increases the adatom (Ar ion) mobility, which can aid in
cleaning the deep sidewalls of a 3-D structure, thereby improving step-coverage
in deep-etched features [5]. However, high sputter etch rates may cause substrate
damage.

Although sputtering of alloy is commonplace, there are several important issues
and approaches. In sputtering, the deposited film composition is usually fairly close
to that of the bulk target, so alloys can be rather easily obtained. However, different
elements in the target alloy may exhibit different sputter yields, causing composi-
tion variation. To achieve better control of stoichiometry, a multiple target system
may be used, where the power of each target can be individually controlled to alter
the final composition of the alloy layer. Also, by using a composite target with dif-
ferent regions of concentration or by changing electrical properties of the plasma,
the composition of the deposited layer can be controlled [6].

Moreover, sputtered compounds can intentionally have a very different com-
position from the sputter target by adding reactive gaseous precursors during the
deposition. Reactive sputtering is a process in which the normally inert sputter gas is
replaced by an inert/reactive mixture [1]. For example, TiN, one of the most popular
diffusion barrier layers in IC fabrication, can be deposited using reactive sputter-
ing. By controlling the partial pressure of nitrogen in the sputtering system, the
composition of TiN can be controlled.
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Stress is also an important issue for sputtered films. A thin film deposited on a
substrate is subjected to either tensile or compressive stress as influenced by the base
layer and deposition conditions. One component of the stress – known as extrin-
sic stress – is due to thermal expansion mismatch of the film with the substrate.
This stress may be significant if the wafer temperature varies (intentionally or unin-
tentionally) from room temperature during the film deposition. In addition, large
intrinsic stresses may also occur depending on deposition rate, film thickness, and
the background chamber environment. In many cases, efforts are made to minimize
these stresses. Alternatively, for MEMS devices, these stresses can be put to good
use to realize devices such as bimorph actuators or stress-engineered 3-D structures
[7, 8].

3.2.3 Pulsed Laser Deposition

Pulsed laser deposition (PLD) is another method for depositing metals, although
much less often used for MEMS. As shown in Fig. 3.4, the system uses a high-
energy laser beam (typically 108 W/cm2) to strike a metal target within a vacuum
chamber. The laser beam melts, evaporates, and ionizes a region of the target. This
ablation process creates a vapor plume that transfers material to the sample wafer.

One major advantage of PLD for MEMS applications is precise stoichiome-
try/composition control and relatively fast deposition rates. Ideally the deposited
material possesses the same chemical composition as the metal target. High quality
crystalline deposits are also possible with substrate heating. The biggest drawback
is that most PLD systems can only provide uniform deposition over a small surface
area, sometimes only about one square centimeter. This decreases the utility of PLD
for volume manufacturing. Despite this drawback, PLD finds application where

Fig. 3.4 Schematic of pulsed laser deposition system U
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precise stoichiometric control is paramount, especially for complex multielement
materials. For metallic systems, this alloy control is beneficial for realizing high-
performance magnetic materials and superconductors. PLD also finds widespread
application for many other complex nonmetallic films, such as oxides, nitrides, and
semiconductors.

The exact process and resulting film composition and structure are dependent on
the laser parameters, chamber pressure/atmosphere, sample temperature, and sam-
ple surface quality. The complex physical and chemical interactions are the subject
of ongoing research.

3.3 Electrochemical Deposition

Electrochemical deposition involves the reduction of metal ions from aqueous,
organic, or fused-salt electrolytes. The reduction of metal ions Mz+ in aqueous
solution is represented by

Mz+ (metal ion in solution) + z e− (electrons) → M (metal deposit)

Two processes can be used to provide the electrons for the reduction reaction:
(1) electroplating (or electrodeposition), where an external power supply provides
the electrons, or (2) electroless deposition, where a reducing agent provides the
electrons.

In MEMS electrochemical deposition is commonly used to deposit surface
coatings, or in the case of electroforming, for producing an entire microstructure
or device. In electroforming, microstructured molds of different materials (e.g.,
polymers/resist, silicon) are electrochemically filled with metals such as nickel,
copper, gold, or various metal alloys. More details can be found in Section 3.4.

3.3.1 Electroplating

The material properties of electroplated metals or alloys are strongly influenced
by the chemistry of the electrolyte (e.g., type and concentration of ions, pH, type
of additives), the physical parameters of the process (e.g., temperature, fluidics,
current), and the property of the substrate (surface quality, shape). Depending on
the metal to be plated and/or on the shape of the desired microstructures, the
electroplating process has to be adapted to the specific application. The basics of
electrochemical deposition can be found in several excellent books (e.g., [9–11])
and are summarized in this section. In addition, starting recipes are provided for
some of the most common electroplated metals for MEMS: nickel, copper, gold,
and some nickel alloys.

3.3.1.1 Electrochemical Reactions

The general setup and operation of an electrochemical deposition cell are shown in
Fig. 3.5. Two electrodes are immersed into an electrolyte. By applying an electric
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current, reduction (electron uptake) takes place at the cathode, and oxidation (elec-
tron liberation) occurs at the anode. In the case of electroplating, the substrate serves
as the cathode, and metal ions are reduced to form a solid lattice. The anode can be
soluble, meaning it is dissolved via oxidation during the electroplating process. The
two partial reactions are expressed by the following equations.

Fig. 3.5 Schematic of a
general electrochemical
deposition cell (using soluble
anode)

Reduction (cathode): Mz+ + z e− → M

Deposition of metal
Oxidation (anode): M → Mz+ + z e−

Dissolution of metal (for a soluble
anode)

The steady oxidation of the anode (a metal to be deposited) ensures a constant
replenishment of metal ions in the electrolyte. Sometimes inert anodes such as plat-
inum are used, for example, in gold electroplating. In this case, replenishment of
metallic ions in the electrolyte is solely provided by manual addition of metal salts
to the plating bath.

The theoretically deposited mass mtheo can be calculated from the electrochemi-
cal Faraday’s law as

mtheo =
M∗I∗t

z∗F
(3.1)

where M = Molar mass the deposited metal; I = Current; t = Time z =

Valency; F = Faraday constant
Other reactions also can occur due to decomposition of water. By the oxidation of

water, oxygen gas can be produced at the anode. By the reduction of water, hydrogen U
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3 Additive Processes for Metals

gas can be released at the cathode. Other components of the electrolyte can also react
at the electrodes. The overall current is thus distributed to these different reactions.
The percentage of the total current associated with the reduction of metal is defined
as the cathodic current efficiency γ and can be calculated by the quotient of the
effective deposited mass meff and the theoretical deposited mass mtheo,

γ =
m eff

m theo
. (3.2)

If hydrogen production at the cathode cannot be suppressed, it usually severely
reduces the current efficiency of the deposition process. Another adverse effect is the
rise of the pH at the electrode surface, which leads to the buildup and incorporation
of metal hydroxides into the deposits, leading to a brittle deposit. The accumula-
tion of hydrogen bubbles, which adhere on the surface, can also cause pores in the
deposit.

3.3.1.2 Deposition Process

In the bulk electrolyte, cations are enclosed in a complex shell. This complex shell
consists of water molecules (hydration shell) or other complexing agents such as
sulfite or cyanide. Before applying a current, the ion concentration is homogeneous
at the electrode surface and in the bulk solution. When applying a current, the metal
ion is consumed at the electrode, and this depletion region extends farther away into
the bulk as the deposition proceeds.

Movement of the complexed metal ions in the electrolyte is governed by three
different mass transport mechanisms: migration, convection, and diffusion. In most
deposition processes the conductivity of the electrolyte is relatively high, and the
applied potentials are moderate. As a consequence, most of the electrical field
drops across the electrical double layer in front of the electrodes, and field-induced
migration is minimal. Therefore the predominant transport mechanisms are usually
convection (due to stirring or agitation), which dominates in the bulk electrolyte,
and diffusion, which dominates near the surface of the electrodes.

The reduction of the metal ions at the cathode is very complex and can be divided
into four parts: (1) diffusion of the solvated or complexed metal ions from the bulk
solution to the electrode surface, (2) dehydration and transport of the cations through
the electric double layer, (3) cationic reaction at the solution–solid interface (ion
uptake and electron transfer), and (4) surface migration and incorporation of the
adsorbed metal atoms into the metal lattice. Figure 3.6 depicts the overall process.

The ion diffusion is described as follows. The region immediately next to the
cathode is characterized by a fictitious Nernst diffusion layer, where the gradient
of ion concentration is assumed constant, as shown in Fig. 3.7. The thickness of
this layer δ is strongly influenced by convection (agitation) in the electrolyte, but
is typically on the order of tens to hundreds of micrometers. In stirred electrolytes
the thickness of the diffusion layer will be determined by this forced convection,
whereas in unstirred electrolyte baths the diffusion layer increases with time.
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bulk solution

+++

diffusion layerelectric

double layer

cathode

(1)(2)

(4)

electron

+ cation

+++

water molecule 

or complexing agent

+++

(3)

Fig. 3.6 Schematic diagram of the electrochemical deposition process

The deposition rate can be enhanced by increasing the current density, up until
the ion concentration at the cathode approaches zero. The current density at which
this occurs is called the limiting current density. The limiting current density (and
hence maximum deposition rate) can generally be increased by increasing the
cation concentration; by increasing the temperature, thus increasing the diffusion
coefficient; and by increasing the convection (e.g., stirring the solution), result-
ing in a smaller diffusion layer. Modifying the electrolyte chemistry, especially via
complexing agents, can also influence the limiting current density.

In the case of pulse-plating, the pulse current density is limited by the depletion
of ions in the pulsation layer, whereas the average current density is limited by the
concentration gradient in the outer stationary diffusion layer. Thus two diffusion
layers can be defined: a pulsation layer in the immediate vicinity of the cathode and
a stationary layer up to the point where the mass transfer is controlled by convection.

Once the cations reach the cathode surface by means of mass transfer, there is
another barrier to overcome before they lose charge and are incorporated into the
crystal lattice. That barrier is called the electric double layer. The simplest model of
the double layer structure is given by the Helmholtz model, as depicted in Fig. 3.8.
The double layer represents an organized arrangement of positive ions from the
solution to compensate for the negative charges on the surface, forming an interface
region similar to a parallel plate capacitor. The thickness of this layer is on the order
of a few nanometers [12]. The cations to be deposited have to penetrate through the
electric double layer, where they shed their hydration (or complex) shell. Then they
acquire electrons in the reduction process and become adsorbed adatoms.

The final step in the formation of a crystalline metal deposit is the incorporation
of the adatoms into the lattice. The adatoms are preferentially incorporated at active
lattice sites such as grain boundaries, imperfections, or pre-existing built-up adatom U
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(a)

(b)

Fig. 3.7 Concentration of metal ions as a function of distance from the cathode (a) for direct
current plating and (b) for pulse current plating

clusters on the surface. If the adsorption of an adatom ensued away from an energet-
ically stable position, surface diffusion may transport the adatom to another active
lattice site on the surface. The process of either building new grains (nucleation) or
contributing to the growth of existing grains defines the formation of metal deposits
in electroplating. Additional inhibitors in a plating bath can influence this nucleation
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Fig. 3.8 Helmholtz model of
the electric double layer. X HP
outer Helmholtz plane; q−

M

negative-charged metal
surface; q S positive-charged
solution side of the interface

and therefore the growth processes that affect the properties of the deposit such as
hardness, internal stress, and so on.

3.3.1.3 Overpotential

In the equilibrium condition (absence of external current), the potential of an elec-
trode is denoted as Eh. As a result of a current flowing through the electrolyte the
potential of the given electrode is changed to E. The difference between these two
potentials is defined as overpotential

η = E − Eh (3.3)

The overpotential arises from the different electrochemical mechanisms associ-
ated with the reactions and movement of the ions or adatoms. The total overpotential
is the sum of the individual overpotentials associated with each of these mecha-
nisms. As a result, any one can be rate-determining for the electrodeposition. The
diffusion overpotential ηdiff arises due to mass transport through the diffusion layer.
If this step is the slowest, the reaction is called diffusion-controlled. The activation
overpotential ηact is associated with transfer of ions and electrons across the electric
double layer and the transfer of the electrons. Therefore ηact is directly related to the
electrode material. If the ion and electron transfer at the metal–solution interface is
the most inhibiting step, the process is considered activation-controlled. The process
by which the uncharged adatoms either form new grains or contribute to the growth
of existing grains is associated with the crystallization overpotential ηcrys. Ohmic U
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3 Additive Processes for Metals

overpotential ηohm stems from the resistivity of the electrolyte. Although the contri-
bution of each overpotential deserves consideration, the activation overpotential or
the diffusion overpotential usually dominates.

3.3.1.4 Bath Composition

Every electrolyte contains metal salts. In addition, different inorganic or organic
substances are added to improve either the performance of the electrolyte solution
(e.g., conductivity) or the deposit quality (e.g., hardness, internal stress). Still other
additives can be used for specific purposes. For example, saccharin is used to reduce
the internal stress of nickel deposits [13], bromide is used for nickel anode activation
[14], and As(III)-salt is used for brightening, grain-refining, and hardening of gold
deposits [15]. Table 3.2 lists some typical additives and their function.

Table 3.2 Example chemical constituents of electrolyte solutions and their function

Type of substance Function Example

Metal salt Provide metal ions Ni(II)-sulfamate,
Cu(II)-sulfate

Wetting agent
(surfactant)

Reduce surface tension of electrolyte Laurylsulfate, Fluorinated
alkylsulfonates

Weak acid Buffer the pH Boric acid
Complexing agent Stabilize electrolyte

Influence selectivity of deposition
process in alloy plating

1,2-Ethylendiamine
Citrate

Salt Increase conductivity of electrolyte Sodium chloride
Brightener Enhance or cause a bright surface of the

deposit
Thiourea

Leveler Reduce the surface roughness of the
deposit

Coumarin

3.3.1.5 Current Waveform

In electroplating, besides the simple direct current, a variety of current mod-
ulations can be applied, such as triangular-, sawtooth-, or rectangular-shaped
waveforms. Rectangular waveforms can be further divided into two characteristic
variants: unipolar and bipolar current waveforms, both of which are commonly used.
Table 3.3 illustrates the current-time-function of direct current, pulse forward cur-
rent, and pulse reverse current. These current modulation schemes affect the plating
mechanism and thus the chemical and microstructural properties of the deposited
layer [16].

As can be seen in Table 3.3, the simplest case is the direct current mode. In con-
trast, the current waveform for pulsed electrodeposition (forward current) consists
of cathodic pulses (tc), separated by a current pause (tp). Pulse reverse electrode-
position consists of a cathodic pulse (tc), followed by an anodic pulse (ta), where
the current is reversed for a short time. In addition, the cycle can be extended
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Table 3.3 Current waveforms for direct current, forward current, and pulsed reverse platinga

Current waveform Mean current density
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Pulse reversed
im = ic tc−ia ta

tc + ta + tp

aThe parameters defining a cycle are: i = current density, im = mean current
density, ic = cathodic current density, ia = anodic current density, tc = duration
of the cathodic pulse, ta = duration of the anodic pulse, tp = duration of the
pulse pause

by a pulse pause (tp). During the cathodic pulse, metal ions are deposited on the
cathode surface. Areas where field lines are concentrated are plated preferentially.
Conversely, metal is preferentially removed in those areas during the anodic cycle.
As shown later, the relative field strengths depend on the absolute current value.
Hence, applying pulse reverse currents can result in a planarization of the deposit.

In pulse plating, a mean current density (im) can be defined, using the amplitudes
and durations of the various pulses. This value represents the average charge density
transferred during one cycle, which governs the deposition rate. Note that in order
to generate the same mean current density as in the direct current case, significantly
higher amplitude forward pulse current densities have to be applied.

The advantages of pulse plating have been studied extensively. Various metal
alloy compositions have been optimized for morphology, magnetic properties, or
mechanical properties (e.g. [17–20]). In the fabrication of printed circuit boards
(PCBs), pulse reverse electroplating of copper is used in order to attain a uniform U
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3 Additive Processes for Metals

filling of small vias and trenches. Pulse reverse methods can, to some extent, reduce
the need for certain chemical additives and thus make bath control simpler.

3.3.1.6 Equipment

Various equipment can be used for electroplating, ranging from very simple to very
complex. For laboratory use, the setup can be very simple, as shown in Fig. 3.9.
This setup consists of a glass beaker, which contains the electrolyte solution. The
electrolyte is stirred by a magnetic bar and heated by a hotplate. A temperature
regulator connected to the hotplate automatically controls the temperature. A metal
plate or titanium basket filled with metal pellets is used as the anode. An inert gas
inlet for nitrogen or argon is sometimes used to prevent oxidation of the electrolyte.
The power supply should be equipped with a pulse module to enable pulse plating
if necessary. An oscilloscope may also be used to monitor the applied pulses.

50°C

25V20V

(9)

(10)

(2)

(3)

(4)

(8)

(7)

(6)

(1)

(5)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Cathode: Wafer holder

Temperature regulator

Anode: e.g., Titanium basket

filled with metal pellets 

Inert gas inlet (optional)

Glass beaker

Magnetic stir bar

Hotplate/stirring module

Power supply

Pulse module (optional)

Oscilloscope (optional)

Fig. 3.9 Schematic of a laboratory-scale electroplating unit
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An example of a more complex and commercially available electroplating unit
is shown in Figs. 3.10 and 3.11. It holds a larger volume of electrolyte than that of
a simple lab setup and includes monitors for liquid level, pH, and additives, as well
as a continuous filtration and a dummy plating cell for cleaning of the electrolyte.
Filtration rids the electrolyte of particles, which can interfere with the deposit.
Dummy plating is used to deposit trace cation impurities on a dummy substrate
before plating on the target substrate. For large-scale manufacturing, continuous fil-
tering, salt replenishment, and pH maintenance are important issues. Also, some
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Fig. 3.10 Schematic of a commercially available Ni–Fe electroplating system (Reprinted with
permission. Copyright 2009 M-O-T, Germany)
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(a)

(b) (c)

Fig. 3.11 Commercially available electroplating unit for use in a cleanroom: (a) plating facil-
ity for cleanroom; (b) process cell with anode; (c) holder for cathode (Si wafer) (Reprinted with
permission. Copyright 2009 M-O-T, Germany)
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3 Additive Processes for Metals

baths may generate gaseous byproducts, so exhaust of these gases should also be
considered.

3.3.1.7 Process Flow

A general overview of the electroplating process flow is shown in Fig. 3.12. The
cleaning procedure has to be adapted to the substrate. Often a rinse with deion-
ized water and a subsequent drying with nitrogen gas are sufficient for obtaining
a particle-free surface. Weighing of the substrate before and after electroplating is
necessary to calculate the current efficiency, which is an important value to esti-
mate the process reproducibility. To ensure good performance and repeatability,
process temperature, electrolyte circulation, and bath chemistry should be controlled
accurately. Control of the pH is also crucial.

Clean conductive substrate 

Weigh dry substrate

Control temperature, flow, and
chemistry of electrolyte

 Place substrate into holder

Check contact between current source and substrate
surface (conductivity check)

Insert holder into electrolyte parallel to anode;
wait a few minutes

Switch on calculated current for calculated time

Remove holder; clean with deionized water;
dry with N2 gas

Weigh dry substrate; calculate current efficiency

Evaluate deposit

Fig. 3.12 Process flow for electroplating
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3.3.1.8 Nickel

Nickel electroforming is a well-established process for fabrication of microdevices
and mold inserts [13, 14, 21–24]. The standard plating baths are based on nickel
sulfamate. Boric acid is used as a pH buffer, and wetting agents (surfactants) are
used to enable electrolyte penetration into micropatterned structures. An unwanted
side reaction is the reduction of hydrogen ions to hydrogen gas according to the
following equation.

Hydrogen formation : 2 H+ + 2e− → H2(g)

As a result the current efficiency is not 100%, because some of the electrons are
used to reduce the hydrogen ions instead of the metal ions. Also the concentration
of hydrogen ions decreases, which changes the pH. The release of hydrogen gas
can also form bubbles that cause pores in the deposit. Therefore a pH-buffering
agent (e.g., boric acid) and a surfactant to enable gaseous hydrogen to escape during
electroforming are crucial for the nickel electrolyte.

The electrolyte formulation and operation parameters can be modified for
specific fabrication environments or according to the desired properties of the
deposit. Some electrolytes contain additional additives such as stress reducers (e.g.,
saccharin). To enhance the electrical conductivity of the electrolyte and the solubil-
ity of the anode, chloride or bromide is used. Also the current density and current
waveform are modified to vary the Young’s modulus or hardness of the deposit [25].

Normally sulfur-depolarized nickel pellets are used as the anode material, but a
high-purity nickel plate may also be used. A large surface area compared to the cath-
ode and the generally good solubility of nickel result in a low anodic overpotential
for most nickel electrolytes. Two typical nickel sulfamate electrolytes suitable for
microfabrication are listed in Table 3.4.

Table 3.4 Example nickel sulfamate electrolytes used for microfabrication

Bath constituents and parameters 1 2

Nickel sulfamate (Ni(NH2SO3)2 ·4H2O) (g/L) 105–110 80
Nickel(II)-bromide

(NiBr2 · 3H2O) (g/L)
0–5

Boric acid (H3BO3) (mL/L) 40 30
Perfluorinated alkylsulfate (2 % solution) (wetting

agent) (mL/L)
10

Additive K (wetting agent) (mL/L) 5
Saccharin (C7H4NNaO3S·2H2O) (mg/L) 0–20
pH 3.8 3.2
Temperature (◦C) 50 40
Cathodic current density (A/dm2) 1.0 0.1–2
Anode material S-Ni pellets in a Ti basket
Growth rate 10 µm/h
References [13] [14] U
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3.3.1.9 Copper

Copper electroplating is used for manufacturing of microdevices and for auxiliary
or sacrificial layers [13, 26]. The most common bath is an acidic sulfate-based elec-
trolyte, which can be used at room temperature and is easy to maintain. For a good
quality of deposit, organic chemicals are used as leveling agents, but this makes the
maintenance of the electrolyte more complicated. Alternatively, copper fluorobo-
rate is used as the Cu salt [27]. For details see Table 3.5. For formation of integrated
circuit interconnects, a different copper plating process is used. Three or four com-
ponent additive mixtures in the electrolyte combined with pulse plating facilitate
the superfilling of via holes and trench lines during the plating process. For further
details refer to [28].

Table 3.5 Example copper electrolytes used for microfabrication

Bath constituents and parameters Copper sulfate-based
Copper
fluoroborate-based

Copper (II)-sulfate
(CuSO4·5H2O) (g/L)

15–25

Copper (II)-fluoroborate (Cu(BF4)2) (g/L) 60
Sulfuric acid (H2SO4, 98%) (mL/L) 200–250
Fluoroboric acid (HBF4) (mL/L) 13
Boric acid (H3BO3) (mL/L) 12
Sodium chloride (NaCl) (g/L) 0.06–0.1
Wetting agent (mL/L) 3
Cuprostar LP1 (leveler) (mL/L) 5
pH 0.7–1.0
Temperature (◦C) 20–25 20–25
Cathodic current density (A/dm2) 1–4 6–12
Anode material Phosphorus

depolarized
copper

Copper (99.9% Cu)

Growth rate (µm/h) 12.5–50
References [13] [27]

3.3.1.10 Gold

Gold has some outstanding properties, including very high conductivity, high ductil-
ity, excellent corrosion resistance, and good biocompatibility. Gold microstructures
are used as metallic parts in microoptics, microfluidics, and micromechanics; for
mask absorber structures in LIGA-technology; and for the fabrication of electrical
contacts in the electronic industry.

Two kinds of gold are used in plating: soft gold (pure gold) and hard gold (gold
alloy). Soft gold is used for metalizing bonding pads and for fabricating microbumps
on silicon IC chips and ceramic packaging boards. Hard gold is used as a contact
material on electrical connectors, printed circuit boards, and mechanical relays. For
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hard gold, alloying metals such as Co, Ni, or W are used. Further aspects of gold
plating processes in the electronic industry are reviewed by [29].

For electrolytic gold plating, three different types of baths are commonly used:
sulfite-based electrolytes with a neutral or alkaline pH; thiosulfate-sulfite-based
electrolytes with a weak acidity; or cyanide-based electrolytes with a range of
pH from weakly acidic to strongly basic. Noncyanide baths are preferred because
they are non-toxic and more compatible with conventional positive photoresists.
Table 3.6 shows an overview of gold electrolytes suitable for microfabrication. In
Table 3.7 some sulfite-based electrolytes are described. In all cases, a platinated
titanium mesh is used as an insoluble anode. Specific skills are needed for mixing
the chemicals to obtain a stable electrolyte. The authors recommend purchasing a
complete electrolyte solution from a commercial vendor.

Table 3.6 Comparison of gold electrolytes suitable for microfabrication

Bath type Gold complex

Current
densities
(A/dm2) Advantages/disadvantages References

Sulfite-based [Au(SO3)2]3− 0.1–0.4 High current efficiency
Very sensitive to process

parameters

[30– 32]

Thiosulfate-
sulfite-based

[Au(S2O3)3]3−

[Au(SO3)2]3−
0.5 Good bath stability

High internal stress of
deposit

[29, 33, 34]

Cyanide-based [Au(CN)2] – 0.2–0.5 Good bath stability
High toxicity
Instability of some resists

(tend to delaminate from
the substrate)

Low current efficiency

[35]

Table 3.7 Overview of sulfite-based electrolytes: composition, process parameters, and applica-
tions

Application X-ray masks Microdevices Microbumps

Metal salt (mol/L) 0.126 0.061–0.126 0.05
Complexing agent for

metal cation
Sulfite Sulfite Sulfite

Sulfate
Chloride

Other additives EDTA; 1,2-Ethylendiamin EDTA
1,2-Ethylendiamin

Brightener (also As(III))

EDTA
As(III)

pH 7 7–9.5 9.0±0.2
Temperature (◦C) 55 ± 2 28–70
Current density (A/dm2) 0.1–0.2 0.1–0.6 0.25–0.3
References [32] [32] [15] U
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3.3.1.11 Nickel Alloys

The rapid development of the field of microsystems has generated new appli-
cations, which in turn require materials to meet new performance demands. In
this regard, electroplated alloy materials can cover a wide spectrum of different
properties depending on their composition. Plating of alloys is generally more com-
plicated than plating of single-element metals because multiple metal reductions
must occur in parallel. These reduction reactions often interact with each other,
creating complex electrochemical processes.

Plating of Ni alloys in general is described in [9, 12, 36]. In [37] the effect of
pulse plating on the deposit quality of alloys is described in detail. In microfabri-
cation, nickel–iron (Ni–Fe) alloys are well known for their versatility, making them
suitable for micromechanical and magnetic applications [38–44]. Also some inves-
tigations on the electroplating of Ni–Co–Fe for magnetic MEMS application are
described in the literature [45–47].

Ni alloys feature a number of superior material properties compared to pure
nickel. Such alloys usually exhibit increased hardness and lower brittleness and can,
most notably, withstand static and dynamic strains. The latter enables an improved
fatigue resistance which is an important characteristic concerning the production of
movable parts such as micro gear wheels or switching devices. Moreover, magnetic
properties of Ni–Fe alloys are characterized by a lower coercivity and much higher
permeability compared to nickel.

Independent of specific application requirements, uniform alloy composition is
a common requirement for reproducible material properties. Hardness and thus
wear/corrosion resistance, residual stresses, ductility, porosity, and surface rough-
ness, as well as magnetic properties are important factors that determine the device
durability. Those properties are dictated by a number of variables during the elec-
trochemical process, such as Ni:Fe ion ratio of electrolyte, additives, bulk pH-value,
temperature, agitation, and current waveform.

In the past, reports on various approaches have delved into the control of certain
layer properties of microdevices including material composition and metallurgical
structure by varying electrolyte formulation and process parameters [44, 48–53]. In
recent years, the influence of pulse plating on material properties and composition
of Ni–Fe alloys for MEMS have been investigated [e.g., 47, 54–57].

In an acid Ni–Fe electrolyte the metal ions are usually provided by chloride or
sulphate metal salts whereby a soluble nickel anode can act as an additional nickel
ion source. The organic boric acid is an important additive as it prevents the hydro-
gen evolution at the cathode by buffering the pH and thus increases cathodic current
efficiency and enables a wider current density range. In addition to acting as a buffer
agent, the boric acid may also alter the composition of the Ni–Fe alloy. Another
additive is citrate, which is a complexing agent for the Fe2+ ions and thus hinders
the formation of unwanted Fe3+ ions. Citrate also shifts the Fe overpotential to more
negative values due to the higher stability of complexed ions. Furthermore, a wet-
ting agent such as sodium dodecylsulfate (SDS) can be added to ensure complete
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wetting of the cathode. Saccharin is effective as a stress reliever. The decrease in the
residual stress can be obtained by increasing the saccharin content of an electrolyte.

In Table 3.8 some recipes for sulfate-based electrolytes are summarized. The
electroplated deposits have an iron content of 10–35%. In the maintenance of Ni–Fe
electrolytes, control of the concentration of the electrolyte composition is crucial.
To prevent Fe3+ formation, the electrolyte should be percolated by an inert gas
(nitrogen or argon). Another option to keep oxygen out is to maintain a protective
layer of argon gas over the electrolyte.

Table 3.8 Some sulfate and sulfate-chloride based Ni–Fe electrolytes for microfabrication

Sulfate-based
Sulfate-chloride
based

Bath constituents and parameters 1 2 3

Nickel sulfate (NiSO4·7H2O) (g/L) 50 45
Nickel chloride (NiCl2·6H2O) (g/L) 44
Iron sulfate (FeSO4·7H2O) (g/L) 3 3.5
Iron chloride (FeCl2·6H2O) (g/L) 1.1
Boric acid (H3BO3) (g/L) 25 25 35
Saccharin(C7H4NNaO3S.2H2O) (g/L) 1 1 1.5
Sodium citrate

(Na3(C6H5O7) . 2H2O) (g/L)
28

Sodium-dodecyl-sulfate (NaC12H25SO4) (g/L) 0.5 0.5 0.4
pH 3.5 2.8 2.5
Temperature (◦C) 50 50 35
Current density (A/dm2) 2–4 0.5 0.6
Thickness of electroplated micro structures

reported (µm)
500 80 2

References [57] [50] [48, 49]

3.3.2 Electroless Plating

Electroless plating requires no external source of electrical current. The term “elec-
troless plating” is generally used to describe three fundamentally different plating
processes: galvanic displacement, substrate-catalyzed processes, and autocatalytic
processes. Galvanic displacement induces electron exchange on the surface of the
substrate in the electrolyte, resulting in the reduction of metal ions. The substrate-
catalyzed process modifies the surface to make it more reactive for oxidation and
reduction. In these first two processes, the plating reaction should cease when the
substrate is covered completely with metal, whereas in the autocatalytic process
a metal salt and a reducing agent in an aqueous solution react continuously in the
presence of a catalyst, making this technique more suitable for thick layers of metal.
Chemical reducing agents often employed are hydrazine, sodium hypophosphite,
sodium borohydride, amine boranes, titanium chloride, and formaldehyde. U
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3 Additive Processes for Metals

A general reaction in electroless plating is described as:

Mz+ (Metal ion) + z e−(suppliex by reducing agent)
catalytic surface

→ M (deposit)

This reaction can occur only on a catalytic surface; once deposition is initiated,
the deposited metal must be self-catalytic to enable continued deposition.

Not all metals show self-catalytic functionality, and thus the kinds of metal for
electroless plating are limited. Since Brenner and Riddell [58] first reported nickel
electroless plating in an autocatalytic sense, electroless plating has continuously
advanced, and now many useful metals are plated electrolessly. Those materials
include nickel, cobalt, palladium, platinum, copper, gold, silver, and certain alloys.
Various bath chemistries are available for each metal, each with different metal salts,
reducing agents, and complexing agents. Some of the electroless plating baths and
conditions for nickel, copper, and gold are introduced in the following sections.

Electroless plating is useful for metal deposition on nonconducting surfaces
such as polymers or inorganic layers. However, because the physical and chemi-
cal properties of metals and polymeric or inorganic materials are quite different, the
adhesion between two materials is often very poor and the plated metals tend to peel
off. To improve adhesion and to increase the number of catalytic sites on the sur-
face, a sample needs to go through surface treatment by physical/chemical etching
processes and surface catalysis prior to immersing in the electroless plating bath.

A brief procedure flow is shown in Fig. 3.13. The surface modification includes
nanoscopic surface roughing using chemical wet/dry etching (e.g., reactive ion etch-
ing) to increase the interfacial surface area for better adhesion. Then the sample is
catalyzed. One popular catalyzing procedure uses a surface treatment with mechan-
ically compliant tin, followed by the major catalytic compound palladium. In order
to provide uniform catalytic sites on the surface and provide a kinetic energy during
the metal reduction on the surface, both the catalysis and electroless plating steps
are performed in ultrasonic environment [59, 60].

Surface modification:

Chemical etching, RIE treatment

Catalyzing:

Sensitizing with Sn (II) + 

Catalyzing with Pd (II) 

Electroless plating:

Metal salts, reducing agents, and

complexing agents 

Fig. 3.13 An example of a
procedure for electroless
plating
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3.3.2.1 Nickel

Electroless nickel plating is one of the most popular catalytic electroless processes
in use today. It is commonly used in engineering coating applications for wear resis-
tance, hardness, and corrosion protection. It is also used in the electronics industry
on PCBs as a coating with an overlay of gold to prevent corrosion. The concept and
basic composition has not changed much since the inception of the process [58]. The
electroless nickel plating bath consists of a source of nickel ions (salts), a reducing
agent, complexing agents, and some additives.

Although many nickel salts such as nickel sulfate, nickel chloride, and nickel
acetate are available, nickel sulfate is preferred because of its low corrosiveness
and low cost. To enhance chemical reduction of nickel at the cathode, a reducing
agent is used such as sodium hypophosphite (NaH2PO2 H2O), sodium borohydride
(NaBH4), and dimethylamine borane (DMAB). Complexing agents are used for
exerting a buffering action to prevent the pH change, preventing the precipitation
of nickel salts, and enhancing stable metal reduction. Note that because there are
several agents inserted in the bath, nickel from electroless plating is not usually
pure but contains other components such as phosphorus or boron.

Table 3.9 shows some bath compositions for electroless nickel deposition with
hypophosphite reducing agent (columns 1–4), borohydride reducing agent (columns
5–6), and dimethylamine borane reducing agent (columns 7–8) [61].

A step-by-step procedure for nickel electroless plating with a hypophosphite
reducing agent is given below [9, 62], which essentially follows the recipe of
Table 3.9 (column 1) except for the amount of hydroxyacetic acid of 30.9 g/L and the
process temperature of 65◦C. With this recipe, a deposition rate of approximately
70 nm/min (4.2 µm/h) is obtained on a printed circuit board and a Si substrate. The
equipment necessary for electroless nickel plating is shown in Fig. 3.14, consisting
of an Sn sensitizing bath, a Pd activation bath, an electroless nickel bath, and an
ultrasonic bath.

Bath Preparation

1. Mix 10 g of SnCl2 and 10 g of HCl. Take 0.375 mL of the solution and mix it
with 120 mL of deionized water to prepare the Sn(II) solution.

2. Mix 10 g of Pd and 10 g of HCl. Take 0.5 mL of the solution and mix it with 100
mL of deionized water to prepare the Pd(II) solution.

3. Measure 129.62 g NiCl2, 105.97 g NaH2PO2·H2O, and 61.8 g HOCH2COOH
into a 1 L beaker. Fill the beaker with deionized water to 1 L. Mix using a motor-
ized mechanical propeller for at least 2 h. (Note that a magnetic stirring bar is not
recommended because the bath contains ferromagnetic Ni.) This stock solution
can be stored for a month or two without noticeable degradation.

4. Add NH4OH to obtain a pH level of 4–6. Mix well for 2 h in a similar way to that
described above. This pH adjustment should be performed immediately before
performing electroless plating. U
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Fig. 3.14 Preparation of
electroless nickel plating

This
figure
will be
printed
in b/w

Electroless Nickel Plating Procedure

1. Rinse a substrate in acetone, then methanol, then deionized water, and then
sensitize it in the Sn(II) solution for 2 min.

2. Rinse the sample in deionized water for 30 s.
3. Catalyze the sample in the prepared Pd(II) solution for 2 min.
4. Rinse the sample in deionized water for 30 s.
5. Submerge the sample in the prepared electroplating bath at 65◦C in an ultrasonic

environment.

Table 3.10 Ingredients of electroless nickel bath with hypophosphite reducing agent [9]

Bath constituents and parameters Molarity (mol)
Molecular
weight Mass (g/L)

AQ2

Nickel chloride
(NiCl2·6H2O)

0.23 129.62 30

Sodium hypophosphate
(NaH2PO2·H2O)

0.09 105.97 10

Hydroxyacetic acid
(HOCH2COOH)

0.5 61.8 30.90

pH 4–6 (using NH4OH or NaOH for adjustment)
Temperature 65◦C

3.3.2.2 Copper

Some electroless copper plating recipes use formaldehyde or its derivatives as a
reducing agent. However, such plating baths produce toxic formaldehyde vapor dur-
ing the process and require high pH (~12.5). An alternative bath uses hypophosphite
as the reducing agent. Table 3.11 shows some bath compositions for electroless cop-
per deposition with formaldehyde reducing agent (columns 1–3) and hypophosphite
reducing agent (column 4) [61, 68]. U
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Table 3.11 Example baths for electroless copper deposition using formaldehyde reducing agent
and hypophosphite reducing agent

Formaldehyde reducing
agent

Hypophosphite
reducing agent

Bath constituents and parameters 1 2 3 4

Copper sulfate (CuSO4·5H2O) (g/L) 3.6 30 10 3.83
Nickel sulfate (NiSO4·6H2O) (g/L) 0.53
Boric acid (H3BO3) (g/L) 30.9
Sodium hypophosphite (NaH2PO2·H2O) (g/L) 28.6
Sodium potassium tartrate (KNaC4H4O6·4H2O)

(g/L)
25 99

Sodium hydroxide (NaOH) (g/L) 3.8 50 10
Sodium carbonate (Na2CO3) (g/L) 32
Formaldehyde (HCOOH (37%)) (g/L) 10 29 20.3
Sodium citrate (Na3C6H5O7·2H2O) (g/L) 15.3
Methyldichlorosilane (CH3Cl2SiH) (g/L) 0.25
Ethylenediaminetetraacetic acid (EDTA)

tetrasodium (N,N′-1,2-
Ethanediylbis[N-(carboxymethyl)glycene]
tetrasodium) (g/L)

20

Temperature (◦C) 22 25 63 65
Deposition rate (µm/h) 0.5 2.5 6.3 8.5
References [69] [70] [71] [68]

The hypophosphite reduced electroless copper plating has advantages including
bath stability, no toxic gas generation, and operation in a lower pH environment.
However, because the deposited copper cannot catalyze the oxidation of hypophos-
phite, the bath needs a small amount of nickel for continuous plating and boric acid
for a high plating rate, resulting in impure copper deposition.

A step-by-step procedure for copper electroless plating with a hypophosphite
reducing agent [68] is given below as an example.

Bath Preparation

1. Mix 10 g of SnCl2 and 10 g of HCl. Take 0.375 mL of the solution and mix it
with 120 mL of deionized water to prepare the Sn(II) solution.

2. Mix 10 g of Pd and 10 g of HCl. Take 0.5 mL of the solution and mix it with 100
mL of deionized water to prepare the Pd(II) solution.

3. Mix the electroless copper plating bath with hypophosphite reducing agent
following Table 3.11 (column 4).

4. Adjust the pH with either KOH or NaOH pellets to the desired pH level (Here it
is 9–9.5).

Note that all ingredients are mixed and dissolved in water together. The mixture
after step 3 can have a shelf life of about a month, but the mixture after step 4 tends
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to plate a thin copper layer on the container wall in a few days. The pH adjustment
should be done right before electroless plating is performed. The solution should
have a clean blue color.

Electroless Copper Plating Procedure

1. Rinse substrate in acetone, then methanol, and then deionized water, and then
sensitize it in the prepared Sn(II) solution for 2 min.

2. Rinse the substrate in deionized water for 30 s.
3. Catalyze the substrate in the prepared Pd(II) solution for 2 min.
4. Rinse the substrate in deionized water for 30 s.
5. Submerge the substrate in the prepared electroless plating bath.

3.3.2.3 Gold

Because of its high chemical stability and mechanical ductility, gold becomes an
indispensable material in the electronics industry. Despite its importance, electro-
less gold plating [29] has been underdeveloped compared with electroless nickel or
copper. Useful electroless gold plating using borohydride or amine borane as the
reducing agent has been reported [72, 73]. A typical bath composition is shown in
Table 3.12.

Table 3.12 Ingredients of electroless gold bath with borohydride reducing agent [73]

Bath constituents and parameters Molarity (mol) Molecular weight Mass (g/L)

Potassium gold cyanide
(KAu(CN)2)

0.02 290 5.8

Potassium cyanide (KCN) 0.2 65 13
Potassium hydroxide (KOH) 0.2 56 11.2
Potassium borohydride (KBH4) 0.4 54 21.6
Temperature 75◦C
Deposition rate 0.7–3.5 µm/h (with stirring)

Bath Preparation (2.5× Concentration) [67]

1. Dissolve 28 g KOH and 32.5 g KCN in about 500 mL of deionized water.
2. Add 54 g KBH4 and stir until dissolution.
3. Dissolve 14.4 g KAu(CN)2 in about 250 mL deionized water.
4. Mix the above two solutions, and dilute to 1 L.
5. Filter through Whatman 41 filter paper or equivalent.
6. Dilute 1 volume of this solution with 1.5 volumes of deionized water to make a
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3 Additive Processes for Metals

3.3.3 Comparison of Electroplating and Electroless Plating

Ni, Cu, and Au microstructures can all be fabricated by electroplating or electro-
less plating. Compared to electroplating, electroless plating contains the following
characteristics and advantages [61].

1. No power supply and electrical contact is necessary.
2. Deposition may occur on a nonconducting surface.
3. More uniform deposition can be formed on three-dimensional geometry without

electric field influence.
4. Deposits are often less porous.

There are disadvantages of electroless plating too. Often the electroless baths
require higher temperatures and have a relatively short lifetime. Electroless plating
is also prone to poor adhesion. Care should be taken when storing electroless plating
baths. A container made of plastic or glass is often found to be covered with elec-
troless plated metal after being stored on the shelf for a while. Also, for electroless
plating, the deposition rate is relatively slow, and metal layers thicker than a few
micrometers are not recommended. In addition, electroless plating metal in selected
regions can sometimes be quite challenging. For example, selective deposition on
a metal surface is fairly easy, but selective coating a polymer on SiO2 is not very
effective (the bath will likely deposit on both the polymer and SiO2 surfaces).

Costs of electroplating and electroless plating are fairly similar. The electroless
plating process requires a chemical reducing agent for metal ions to be converted
into the elemental conformation, therefore it is considered as a more expensive pro-
cess from the material cost point of view. However, this chemical cost is offset by the
advantage of not requiring equipment such as power supplies or switching circuits
for advanced current control.

There are clearly pros and cons associated with both electroplating and electro-
less plating. In situations where either electroplating or electroless plating could
theoretically be used, the decision for one or the other is often dependent on many
process integration issues. In general, electroless plating can be considered as a
complement to electroplating rather than a “competitor.”

3.4 LIGA and UV-LIGA Processes

One of the most distinctive MEMS processes is the construction of thick and high-
aspect-ratio three-dimensional (3-D) microstructures. High aspect ratio is modestly
defined as a height to width ratio of 2 to 1 or greater. Fabrication of these structures
often relies on X-ray or UV lithography of thick polymer layers.4 The patterned

4See Chapter 9 for more information on lithography.
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polymeric structures can be used directly as a MEMS device or used as a mold for
metal electrodeposition. In this section, two fabrication approaches for achieving
high-aspect-ratio 3-D electroformed metallic structures are described: one with X-
ray lithography (LIGA), and the other with UV lithography (UV-LIGA or LIGA-
Like).5

3.4.1 Process Explanation

Both LIGA and UV-LIGA processes share common fabrication steps except for the
initial step of polymeric mold fabrication. A general fabrication procedure for both
processes is described in this section.

Because these are surface micromachining processes, there is no strict crite-
rion for substrate selection. A variety of substrates such as Si, glass, ceramic, and
printed wiring board are available, however, an oxidized Si substrate is used as an
example here (Fig. 3.15). An electrical seed layer typically consisting of Ti/Cu or
Cr/Cu is deposited on the substrate using either sputtering or evaporation. Cu does

Deposit thin

adhesion/seed

layers

Begin with

oxidized Si

substrate

Photodefine

polymer

mask/ mold 

Electroplate

metal

Etch polymer 

mold and thin 

metal layers 

Fig. 3.15 Basic
electroplating process to form
single-layer metal structures

5The German acronym “LIGA” refers to a three-step process: X-ray-Lithography, Electroplating
(german: Galvanik), Polymer Replication (German: Abformung). Nowadays, “LIGA” is commonly
used in reference to the two-step process of lithography and electroplating (excluding the polymer
replication step). U
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3 Additive Processes for Metals

not stick well to most substrates so Ti or Cr is employed as an adhesion layer
(see Section 3.5.1). Typical thicknesses of Ti (or Cr) and Cu are 10–30 nm and
100–300 nm, respectively. After the seed layer deposition, a thick polymer layer
is coated, soft-baked, and lithographically patterned to form a micromold for a
subsequent electroplating. LIGA typically uses polymethylmethacrylate (PMMA)
or SU-8 (an epoxy-based polymer) for X-ray lithography, whereas UV-LIGA uses
various UV-sensitive photoresists including DNQ-novolak-based photoresist, SU-8,
polyimide, and others.

With the photoresist mold in place, the substrate is then electroplated. The elec-
troplated metal fills the mold confined by the sidewalls. Usually the electroplating
is stopped before it reaches the top of the mold. But sometimes it is electroplated
over the mold to form “mushroom”-type structures for some applications. After
electroplating, the polymer mold is removed using a solvent and/or plasma etching.
The electroplated structures are still electrically connected to each other through the
seed layer. The Cu and Ti seed layers are then sequentially time etched to isolate the
electroplated structures electrically and complete the process.

With the introduction in the 1990s of UV photopatternable high-aspect-ratio
polymers such as SU-8, high-quality sidewall and high-aspect-ratio molds could
be fabricated using UV lithography, as compared to X-ray lithography. The electro-
forming process using UV-patterned molds and subsequent electroplating has been
called UV-LIGA, LIGA-like, or often “poor man’s LIGA.”

The UV-LIGA process does not provide the extreme aspect ratios possible with
X-ray LIGA, but is sufficiently suitable for many applications. A good guideline
is that an aspect ratio of 6:1 can be fabricated by UV-LIGA. It is also restricted
to a maximum resist height of 800 µm or so. Also submicron pattern dimensions
may not be effectively produced because of the wavelength of the UV source, for
example, i-line (λ = 365 nm). However, in addition to low cost in equipment, the
process has other advantages such as batch processability, manufacturability, and
relative simplicity, providing an affordable system set for laboratory and industrial
usage.

3.4.2 Electroplating in LIGA and UV-LIGA Microstructures

The height and surface profile of high-aspect-ratio electrodeposited metal structures
and the homogeneity of their thickness distribution are influenced by various factors,
which can interfere with each other. The main factors and important effects are
explained in this section.

The deposition rate is proportional to the current density. Therefore a higher cur-
rent density results in a thicker deposit. The distribution of the current density is
associated with the distribution of the electric field lines (primary current distribu-
tion). Because the metal surface is highly conductive, the field lines are normal to
the electrode surface. If the anode has a larger area than the cathode, the field line
density and current density are higher at the edge of the substrate, which causes a
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thicker deposit at the edge of the substrate (“macro bathtub effect”). If the cathode
surface is patterned with resist structures, the electric field lines bend, and a current
concentration occurs at the edge of the structures [74, 75]. Therefore the electro-
plated layer is usually thicker near the edges of the electroplated features (“micro
bathtub effect”) and sometimes higher in narrow structures than in wide structures,
as shown in Fig. 3.16.

Another consideration for electroplating in high-aspect-ratio features is that the
transport mechanism of the metal ions depends on feature size and depth. As a
result, the electroplating rate may vary during the plating process [76]. Figure 3.17
shows three different states that occur in filling a mold structure by electroplating.
At the beginning of the deposition, the process is highly diffusion limited. As the
plated layer grows and the trenches begin to fill, the diffusion limitations begin to
wane. At an intermediate filling, the penetration range of the convection is reached.
This depends on the lateral size of the structure itself. In the case of structures with
sufficiently wide lateral dimensions, the flow velocity in the plating bath reduces the
extension of the diffusion layer, as described in Section 3.3.1.2. Very high-aspect-
ratio structures therefore show a reduced plating rate in the beginning of plating. In
this case, the electroplated layer would be thinner in narrow structures, as compared
to wider structures.

Fig. 3.16 Schematic of electrical field line distribution using resist-patterned substrates. The field
line density is higher within narrow structures and at the edge of wide structures, which affects the
height and surface profile of the electroplated microstructures

Fig. 3.17 Schematic of the diminishing influence of diffusion during metal growth. The diffusion
layer thickness depends on process progress and on the penetration range of convection. At t 3, the
deposition rate is improved due to spherical diffusion

This
figure
will be
printed
in b/w
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3 Additive Processes for Metals

All these effects cause inhomogeneous deposition rates over the substrate as well
as within the features. To minimize these unwanted effects and improve the plating
uniformity, some rules are given in the following.

1) Use a shield or a wafer holder to homogenize the electrical field at the
macroscopic scale.

2) Use dummy plating areas over the whole substrate to promote a homogenous
current distribution.

3) Use microstructured dummy areas that surround the functional features.
4) Use moderate flow to get similar heights of diffusion layers.
5) Use moderate current density to avoid insufficient supply of ions at the bottom

of the microstructure.
6) Limit the deposition height to be about 2/3 of the mold height (see Fig. 3.17

for t2).

More rules for LIGA design can be found in [77].
To show the potential of the LIGA techniques, one example is given. Figure 3.18

shows (a) a SU-8 resist mold and (b) the replicated Ni–Fe structure. The electroplat-
ing produces the exact negative of the structural details and the sidewall roughness
of the resist mold. In Fig. 3.19 a commercially available micro gear system is
shown. Crucial features for this application are the high aspect ratio in combina-
tion with the parallel sidewalls of the resist structure, which is typical for LIGA.
Other applications of LIGA are described in [78, 79].

3.4.3 Multilevel Metal Structures

Often multiple metal levels and vias are necessary to enable complex wiring inter-
connections or complex mechanical microstructures. Multilevel fabrication can be
achieved by extending the previously described process (see Section 3.4.1) using
multiple masking and electroplating steps. For wire connections, an interlayer
dielectric material must be selected to electrically insulate the metal layers from
each other to avoid unexpected short circuits. Considering that the top surface of
the first metal layer may be fairly rough (typical of many electroplated metals), the
dielectric must be able to conformally and completely coat the top and side surfaces
of the lower metal layer. Even the smallest pinhole defect in the interlayer dielec-
tric can cause the electrical insulation to fail. Commonly used interlayer dielectric
materials include PECVD or sputtered oxide/nitride, spin-on glass, or a chemically
stable spin-coated polymer such as polyimide or SU-8. The intended temperature of
operation must also be considered, because polymer dielectrics may not be suitable
at a 100◦C or more.

A fabrication process for achieving a two-layer metal structure is shown in
Fig. 3.20. The process begins by depositing the first metal layer as described in
Fig. 3.15. The interlayer dielectric is deposited and vias are opened to provide
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(a)

(b)

Fig. 3.18 SEM micrograph
of high-aspect-ratio
microstructures: (a) SU-8
resist mold; (b) electroplated
Ni–Fe [57] (Reprinted with
permission. Copyright 2008
Springer Europe)

interconnects between the two metal layers. For many films, this step requires
the patterning of a photoresist mask and a subsequent etch. In contrast, the use
of a photosensitive polymer dielectric offers the opportunity for simple one-step
photodefinition.

After the interlayer dielectric is formed, a new adhesion/seed layer is required,
because a conductive electrical surface is needed for electroplating. In order to pro-
vide sufficient step-coverage over the topography created by the first metal layer,
sputtering is the preferred method. It should be noted that adhesion of the metal to
a polymer interlayer dielectric can be quite low. If necessary, adhesion promoters
may be used to improve adhesion of the metal (see Section 3.5.1).

After the seed layer deposition, a polymer mold is photodefined to create the
pattern for the second metal layer, and the metal is subsequently electrodeposited to
the desired thickness. Afterwards, the polymer mold and thin metal layers are etched
away. If necessary a passivation layer can be deposited on top of the second metal
layer for protection from the environment. Also with the right selection of materials, U
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Fig. 3.19 Ni–Fe microplanetary gear system; structure height = axial length : 1 mm, diameter
8 mm (Reprinted with Permission. Copyright 2009 Micromotion GmbH, Germany)

the interlayer dielectric can be selectively etched away to create “free-standing”
bridge segments that are isolated by air [80–82].

In addition to the planar metal layers, some MEMS devices creatively employ
high-aspect-ratio vertical via structures for mechanical or electrical functionality.
For example, metal vias are used for vertical interconnects in MEMS packag-
ing applications [83] and for electrical passive components in RF MEMS [84].
Fabrication of vias with high aspect ratios is often desired, and various methods
for achieving such structures are shown in Fig. 3.21.

The different characteristics of these approaches are summarized in Table 3.13
and described as follows. First is the damascene process, used extensively in silicon
VLSI processing [85]. In damascene, an oxide mold is used, and conformal seed
layers are sputtered, followed by copper electrodeposition. Excess copper protrud-
ing from the molds is removed by chemical mechanical polishing (CMP),6 leaving
copper only in the via or trench. The interdielectric oxide layers bounding the cop-
per are intended to remain at the end of the process, serving as an electrical insulator
and mechanical supporting layer for the subsequent processes.

For 3-D polymeric-mold-based processes such as LIGA or UV-LIGA, CMP may
damage the softer polymer mold material resulting in uneven surface morphology.
To avoid polishing steps, several alternatives have been explored. The plate-through-
mold approach uses seed layers deposited before the molds. The plating time is
proportional to the depth of the mold, and the mold often must be removed after
the plating, which lengthens the process time further. Moreover, removal of some
polymeric molds such as polyimide or SU-8 often relies on expensive (and relatively
slow) dry etching processes.

6See Chapter 13 (specifically Section 13.7) for more information on CMP.
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Electroplate
Metal 1 layer 

Deposit inter-
layer dielectric
and pattern vias 

Sputter thin
adhesion/seed
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Photodefine
polymer mold 
for Metal 2 

Electroplate
Metal 2 layer

Etch polymer
mold and thin
metal layers 

Fig. 3.20 Electroplating process to form multilayer conductive layers

Another approach – a wet etch back process – has also been used for high-aspect-
ratio via connections with polymer molds [86]. This process is similar to damascene,
except that a wet chemical etch is used to etch back protruding copper, as opposed
to CMP. Although suitable for polymer molds, planarity is problematic.

An embedded conductor fabrication (as previously described in Fig. 3.20) uses
mold formation and a combination of two simultaneous plating processes: a con-
formal plating process through nonremovable lower via mold and a conventional U
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(a) (b) (c) (d)

1. Oxide mold 1. Seed layer 1. SU-8 mold 1. SU-8 mold

2. Conformal seed layer 2. PR mold 2. Conformal seed layer 2. Conformal seed

    layer 

3. Conformal

    electroplating 

3. Conformal

    electroplating 

3. Plate-through-mold 3. PR patterning for

    upper layer 

4. Polishing(CMP) 4. Repeat 1–3 4. Wet etching 4. Conformal+

    plate-through-mold

1oxide

2seed layer

3

4

5

1

2PR

3

4

5

1SU-8

2seed layer

3

4

5

1

2seed layer

3

4

5

SU-8

PR

5. Repeat 1–4 5. Remove PR and

    seed layer

5. Follow (b) 3–5 5. Remove PR and 

    seed layer

Fig. 3.21 Fabrication process comparison for one via and one upper conducting layer configura-
tion: (a) damascene process; (b) conventional plate-through-mold process; (c) conformal plating
process with etch back; (d) conformal plating without etch back [84] (Reprinted with permission.
Copyright 2005 IOP)
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plate-through-mold process through a removable upper conductor mold [84]. The
vias are embedded in the mold from which they are formed: the mold is not removed
after the structures are completed. This eliminates a long etching step for the mold
removal, which simplifies and shortens the process. Also, the conformal plating
makes the via fill time independent of the via height. At the end of the process,
the conductors are embedded in the mold, resulting in good mechanical strength for
subsequent process or packaging steps. The low-temperature polymeric process also
facilitates post-CMOS compatibility if necessary.
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3 Additive Processes for Metals

3.5 Materials Properties and Process Selection Guidelines

for Metals

This section provides general guidelines for the selection of metals for use in
MEMS. It also provides relevant material properties and application issues relating
to adhesion, electrical, mechanical, thermal, and magnetic aspects.

3.5.1 Adhesion

Regardless of the intended functional application, adhesion of any metal to a par-
ticular substrate is critical to ensure successful microfabrication and long-term
reliability. Adhesion depends on many factors, including type of substrate, rough-
ness of the substrate, deposition methods, thickness of the film, and so on. The
adhesion is determined by the interfacial energies of the interface, which may be
metal–metal, metal–dielectric, or metal–polymer. Delamination occurs when the
intrinsic and extrinsic stress in the deposited metal films overcomes the interfacial
energy. Generally, cracking is caused by tensile stress, and peeloff by compressive
stress.

Intrinsic stress is the result of crystallographic defects in the film, and extrin-
sic stress is due to the thermal expansion mismatch between the film and substrate
[87]. For most MEMS applications, the extrinsic stress plays a major role. However,
intrinsic stress can also be problematic. For example, stress accumulates with
increasingly thick electroplated films, so this stress often limits how thick an
electrodeposited layer may become.

Table 3.14 qualitatively summarizes the adhesion of various metals to different
materials. Many metals, especially noble metals, do not adhere very well to common
MEMS substrates such as Si, SiO2, or glass. Often, however, thin layers of interfa-
cial materials can be used to improve adhesion. The most widely used adhesion
enhancing layers are Ti and Cr (as well as Ta and W) with thickness of 5–20 nm,
usually sputtered or evaporated.

The reason for this enhancement is as follows [91]. These adhesion-promoting
metals all readily oxidize, in contrast to noble metals such as Au, Ag, and Pt. Thus,

Table 3.14 Qualitative adhesion of thin film metals to different substrates

Si [87] SiO2 [87] Polyimide [88, 89] PDMS [90]

Al Moderate Good Moderate –
Au Moderate Poor Poor Poor
Cr Good Good Good Good
Cu Moderate Poor Poor Poor
Ni Moderate Good Poor –
Pt Moderate Good – Poor
Ta Good – Good –
Ti Good Good Good Good
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when an adhesion-promoting metal is deposited onto a substrate such as SiO2, glass,
or even a “clean” Si wafer with just monolayers of native oxide, chemical bonding
occurs between the metal and the substrate by partial oxidation of a very thin inter-
facial layer of the metal. That oxide formation results in covalent bonding between
the adhesion-promoting metal and the substrate. A metal deposited on top of this
adhesion layer metal can interdiffuse with the adhesion-promoting metal and thus
provide strong bonding of the top metal. For this mechanism to occur, the adhesion-
promoting layer must not be exposed to air before depositing the second metal layer
on top. If the top surface of the adhesion layer is air oxidized, it can no longer inter-
diffuse with the top metal, hence the bond between the two metals will be very weak
and adhesion poor.

Many MEMS applications employ metals deposited on polymers. Metal–
polymer interfacial issues are much more complex, with adhesion dependent on
the concentration of functional groups on the polymer surface and the bond strength
between the metal atoms and these functional groups [92]. The metal diffusion depth
into a polymer has been found to inversely correlate with adhesion, that is, lower dif-
fusion corresponding to stronger adhesion [89]. Other environmental and processing
factors also play a role, as described below.

For polyimide, the adhesion of thin-film metals is generally good. Cu and Ni
weakly bind to polyimide, Cr bonds strongly, and Al is somewhere in between
[89]. In order to improve adhesion, an interfacial layer such as Ta can be used [93].
Or prior to deposition of metal, the polyimide surface can be modified by oxygen
plasma, argon sputtering, or chemical etching (KOH) to enhance adhesion [88].
Note, however, metal–polyimide adhesion may deteriorate with exposure to high
temperatures or high humidity [88].

PDMS has very low surface energy, so that when metals are deposited on top
of it, wavelet morphology may occur on the PDMS surface [90]. This deformation
may cause discontinuities or rupture of thin metal lines. Nevertheless, the adhesion
of Ti and Cr on PDMS is good, so these are often used as an adhesion layer between
PDMS and other metals such as Au and Pt. In addition, it is reported that the adhe-
sion of metal with PDMS can be enhanced by plasma-treating the PDMS surface
[92].

3.5.2 Electrical Properties

Metals are widely used in MEMS for electrical properties. Many pure metals are
highly conductive, exhibit good adhesion to MEMS substrates, and good stability.
Electrical interconnections (wires) are the most obvious and widespread electrical
application for metals. Here, the most important parameter is the electrical resistivity
(or inversely, conductivity). However, there are many other factors when considering
selection of an appropriate metal for electrical applications. Table 3.15 summarizes
some of these parameters, which are further discussed below.

The effect of skin depth must be considered for metals that will conduct high-
frequency AC currents. The “skin effect” is the tendency for currents to be forced to U

N
C

O
R

R
E

C
T
E

D
 P

R
O

O
F

SPB-140376 Chapter ID 3 October 29, 2010 Time: 08:22pm Proof 1

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

3 Additive Processes for Metals

Table 3.15 Electrical properties of metalsa

Electrical
resistivity (µ�

cm)
[94]

Temperature
coefficient of
resistance (10–3 K–1)
[95]

Solderable
[96]

Wire
bondable [97,
98]

Self-
passivating
oxide [99]

Ag 1.62 3.8 Yes Al No
Al 2.71 3.6 Difficult Au, Al Yes
Au 2.26 8.3 Yes Au, Al –
Cr 12.6 3.0 No No Yes
Cu 1.71 3.9 Yes Aub No
Ni 7.12 6.9 No No Yes
Pt 10.7 3.9 Yes Al –
Ta 13.4 – Yes Al Yes
Ti 39.0 – No No Yes
W 5.39 4.5 No No –

aElectrical resistivity at 25◦C; TCR values at 20◦C
bDifficult, and reliability uncertain

the surface of a conductor, thus making the wire appear more resistive with increas-
ing frequency. For this reason, increasing the cross-sectional area of a metal much
beyond the skin depth does not result in lower resistance for an AC signal. The skin
depths of most metals are only tens of micrometers above 1 MHz (e.g., the skin
depth of Cu at 1 MHz is ~65 µm [100]). Most metals have a relative permeability
of approximately unity, however, Ni and other ferromagnetic metals can have large
permeabilities, leading to even smaller skin depths.

Most conductive materials also exhibit a change in resistance with temperature.
The percentage resistance change per degree Celsius is referred to as the temperature
coefficient of resistance (TCR) and is specified at a standard temperature. Most
metals have a positive TCR, meaning that the resistance increases with temperature.
The TCR is an important design consideration when metal structures are subjected
to high/low temperatures or thermal cycling, especially for resistive-based sensors
where unpredictable changes in interconnect resistance may affect the overall sensor
performance. Metallic structures may also be specifically designed to take advantage
of the TCR for sensing as a resistive temperature detector (RTD). In particular, Pt
has a stable TCR over a wide temperature range, relatively high baseline resistivity,
and good thermal stability, making it an ideal choice for use as an RTD.

Thermal and chemical stability are also critical to the long-term functioning of
metals. Oxidation will occur on the surface of most metals in the presence of air. The
impact of this oxidized layer will vary from metal to metal, and thus so too does the
treatment necessary to prevent corrosion. Noble metals such as Au and Pt group
metals do not readily form oxides, whereas some metals such as Al, Ti, and Cr form
a thin, self-passivating oxidized layer that serves to protect the bulk of the metal
from further oxidation [101]. The oxide layers of other metals such as Cu do not
protect the bulk and thus have the possibility of total corrosion. Such metals must be
passivated with a stable material if they are to be exposed to the atmosphere or harsh
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conditions for long periods of time. Also, when creating contacts to these metals in
successive metallization steps, the oxide should be removed immediately prior to
the contact being made. Sputtering tools often feature an argon sample sputtering
that can etch away the oxidized layer by ion milling. This is particularly useful, as
the freshly cleaned metal surface is kept in an inert environment until sputtering the
next metal.

Another important design aspect that can be easily overlooked is external connec-
tions. Most MEMS devices use bond pads on the chip surface for external electrical
connections. These metal surfaces are exposed to the ambient environment, and
subject to oxidation/corrosion, so exposed metals should exhibit self-passivating
oxidation characteristics. It is also often desired to have metals that are easily
solderable and/or wire bondable to facilitate device packaging.

3.5.3 Mechanical Properties

Although not as widespread as silicon or polysilicon, metals are also widely used
for micromechanical elements such as beams, diaphragms, springs, hinges, and so
on. The functionality and reliability of any mechanical structure depends heavily
on the mechanical properties, requiring knowledge of elasticity, inelastic response,
ultimate strength, and fatigue. For several reasons, however, mechanical properties
of deposited films are one of the most problematic issues in MEMS designs.

First, the properties of microfabricated thin films can differ greatly from the
bulk properties. Second, the mechanical properties of a material depend on both
purity and microstructure, which for thin films can be very sensitive to film
thickness and deposition conditions. Because of the planar fabrication processes
used for MEMS, many films may be transversely isotropic (different properties
in-plane versus out-of-plane). For these reasons, although general guidance can
be obtained by examining bulk isotropic properties, these numbers are likely
not replicated in thin films. And because of the process sensitivities described
above, tight process control is very important for obtaining repeatable material
properties.

Another complication is that there are numerous techniques used to directly
or indirectly measure mechanical properties, including tension/compression tests,
bending tests, indentation tests, dynamic tests, passive strain sensors, and others
[102, 103]. Some of these methods are prone to large inaccuracies, and/or are only
suited for extracting certain mechanical characteristics [104]. As a result, multiple
test methodologies with different test structures may be necessary to measure all
important mechanical properties.

Electroplated Ni and Ni alloys – used in LIGA-based fabrication – are the most
widely studied metals for their micromechanical properties. Here, the electroplating
conditions play an important role in the microstructure and thus mechanical proper-
ties. As compared to bulk Ni, electroplated Ni films generally show a slightly lower
modulus, but much higher yield strength [103]. The elasticity of thin-film Al, Cu, U
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Table 3.16 Mechanical properties of bulk metals commonly used in MEMS [105]

Material Density (kg m–3) Young’s modulus (GPa)
Poisson’s ratio
(Unitless)

Ag 10500 83 0.37
Al 2700 70 0.35
Au 19280 78 0.44
Cr 7190 279 0.21
Cu 8960 130 0.34
Ni 8910 200 0.31
Pt 21440 168 0.38
Ta 16650 186 0.34
Ti 4510 116 0.32
W 19250 411 0.28

and Au usually matches their bulk properties, but like Ni, their ultimate strength is
usually higher [103].

The bulk mechanical properties for the most common metals used in MEMS
are tabulated in Table 3.16. These values provide the designer a starting point from
which to work. For design and fabrication, more specific information is required.
The reader is encouraged to find the appropriate literature but cautioned not to
assume identical results will be achieved, even if carefully recreating the pro-
cess steps and conditions. A film deposited in one system may differ from a film
deposited under identical conditions in a different system.

3.5.4 Thermal Properties

Metals are also widely used for thermal applications. They are often used as heat
spreaders or thermal conductors, because most metals exhibit high thermal conduc-
tivity. They are also commonly employed in thermal bimorph actuators, where two
materials with differing thermal coefficients of expansion (TCEs) are used to form
a thermal actuator. Table 3.17 summarizes the bulk thermal properties of commonly
used metals for MEMS.

Most metals tend to exhibit larger TCEs than semiconductors or dielectrics, thus
enabling highly mismatched bimorph structures such as Al with SiO2. For these
actuators, the metal may also be used as a heater so that the actuation control is via
electrical current. The converse side of this is that thermal mismatch can also create
significant problems, such as thermally induced stress. This can be problematic,
especially in packaging of mechanical systems.

Although metals generally have fairly high melting points, care must be exercised
when considering high-temperature applications. Melting is usually not a concern,
but, rather, diffusion or oxidation because many metals exhibit high diffusivity
and propensity for oxidation. Special care, such as diffusion barriers or passivation
layers, may be required to mitigate these surface interactions.
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Table 3.17 Thermal properties of bulk metals commonly used in MEMSa [96]

Material
Thermal coefficient of
expansion (10–6 K–1)

Thermal
conductivity
(W m–1 K–1)

Specific heat
capacity (J kg–1

K–1)
Melting point
(K)

Ag 18.9 429 235 1235
Al 23.1 237 897 933
Au 14.2 317 129 1337
Cr 4.9 93.7 450 2180
Cu 16.5 401 384 1358
Ni 13.4 90.7 445 1728
Pt 8.8 71.6 133 2041
Ta 6.3 57.5 140 3290
Ti 8.6 21.9 522 1941
W 4.5 174 132 3695

aThermal conductivity at 27◦C; specific heat capacity at constant pressure at 25◦C

3.5.5 Magnetic Properties

Various metal alloys are known to exhibit strong ferromagnetic behavior. These
magnetically responsive materials are usually categorized as either soft or hard mag-
nets. Hard magnetic materials exhibit a strong magnetization in the absence of an
external magnetic field. Therefore, they can provide a source of magnetic field with-
out any external power. Conversely, soft magnetic materials retain little remanent
magnetization, but they can be easily magnetized in the presence of a small mag-
netic field. Soft and hard magnetic materials are often used together to guide and
concentrate magnetic fields in specific regions.

Magnetic materials for MEMS are used in various ways. Soft magnetic materials
can be used with electroplated metal coils to form on-chip inductors and trans-
formers. More complex devices such as actuators, motors, generators, or energy
harvesters can also be built using hard and/or soft magnets. These structures cap-
italize on the same electromechanical phenomena employed in large-scale electric
machines. The magnetostrictive (magnetic field-induced strain) properties of cer-
tain alloys can also be used for direct magnetomechanical coupling. Deposition of

Table 3.18 Summary of typical properties for soft magnetic electroplated alloys [40]

Material
Saturation flux
density (T)

Easy-axis
Coercivity
(Oe)

Resistivity
(µ�·cm)

Magnetostriction
(ppm)

Film stress
(MPa)

Ni80Fe20 1.0 0.2 20 < –3 100
Ni45Fe55 1.7 0.5 40 +20 160
Co–Fe–Cu 1.8–2.0 < 1 ± 3
Co–Ni–Fe 2.0–2.2 < 2 30 +3.5 115
Ni20Fe80 2.2 2.5 35 +25 240
Co–Fe 2.4–2.5 5–10 +45 845 U
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magnetic alloy films is typically achieved via electroplating, sputtering, or PLD,
inasmuch as good alloy control is necessary.

Selection of magnetic materials is very complex. Unfortunately, there is no uni-
versal “one-size-fits-all” perfect material for either soft or hard magnets. Rather,
there are different microfabrication methods and different alloy combinations, each
with advantages and disadvantages [40, 106]. For example, the higher saturation
flux density soft magnetic alloys tend to have larger coercivities, and thus may
not be suitable for high-frequency applications because of excessive hysteresis core
losses. As another example, very high-performance hard magnets are possible, but
they require high-temperature annealing, perhaps eliminating them from consider-
ation because of process integration concerns. A thorough treatment of the design
and selection of magnetic materials is beyond the scope of this chapter, but the
information below provides a starting point for initial evaluation.

Soft magnetic metals are usually Ni, Fe, and Co metals and their alloys, such
as Ni–Fe, Co–Fe, and Co–Ni–Fe. The properties required for soft magnetic mate-
rials are high-saturation flux density, high permeability, low coercivity, and high
resistivity. In addition, low magnetostriction, low film stress, and good corrosion
resistance are also desired. Table 3.18 lists typical soft magnetic electroplated alloys
and their properties. Ni80Fe20 is the most widely used because of its good magnetic
performance and relatively easy and reliable fabrication.

Hard magnetic metals include some transition metal alloys (e.g., Co–Ni–P, Co–P,
Fe–Pt, and Co–Pt) and iron/cobalt-rich rare-earth intermetallics (e.g., SmCo5,
Sm2Co17, Nd2Fe14B). Hard magnets generally serve as a source of magnetic field,
therefore the performance required for hard magnets are high energy density, high
coercivity, and high remanence, as well as good thermal and chemical stability.
Table 3.19 summarizes selected hard magnetic metal alloys. Co–Ni alloys are the
most widely explored. They can be easily electroplated at low temperatures, but the
magnetic properties are fairly weak. Electroplated Co-rich Co–Pt alloys (Co content
approximately 80%) have also been developed with better performance. Equiatomic
CoPt and FePt alloys have also been demonstrated with even better performance, but
high-temperature annealing is required to induce an ordered L10 phase. Sputtered
rare-earth alloys of Sm–Co or Nd–Fe–B offer the strongest properties (as in bulk),
but these all require high-temperature deposition or annealing.
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